Introduction to the Network Weather Service

T.L. Thomas, University of New Mexico

Feb 3, 2003

The Network Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing, Rich Wolski, Neil Spring,
and Jim Hayes, Journal of Future Generation Computing
Systems,Volume 15, Numbers 5-6, pp. 757-768, October, 1999.

Monitoring, Prediction and
Scheduling on the Grid

Jennifer M. Schopf
Argonne National Lab

Scheduling and Prediction

on the Grid
o First step of Grid computing — basic functionality
— Runmy job
— Transfer my data
— Security
» Next step — more efficient use of the resources
— Scheduling
— Prediction

— Monitoring

How can these
resources be used effectively?

 Efficient scheduling
— Selection of resources
— Mapping of tasks to resources
— Allocating data

 Accurate prediction of performance

» (Good performance prediction modeling
techniques

Replica Selection

* Why not use something like Network
Weather Service (NWS) probes?

— Wolski and Swany, UCSB
— Logging and prediction

— Small data transfers

— CPU load, memory, etc.

The Network Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing, Rich Wolski, Neil Spring,
and JJm Hayes, Journal of Future Generation Computing
Systems,Volume 15, Numbers 5-6, pp. 757-768, October, 1999.

Paper Qutline:

1. Introduction
2. System Architecture
(Figure 1)
3. Nam ng and State Managenent
4. Performance Monitoring
4.1 NWS Sensors
4.2 CPU Sensor
(Figure 2)

4.3 Network Sensor

5. Forecasting
5.1 Exanpl e Forecasting Results
(Figure 3)

5.2 Incorporating Additional
For ecasti ng Techni ques

Reporting Interface

6.1 C API

6.2 CA Interface

Sensor Control

(Figure 4)

7.1 Adaptive Tinme-Qut D scovery
Rel at ed Work

Concl usi ons and Future Wrk

Ref er ences

The Network Weather Service: A Distributed
Resource Performance Forecasting Service for
Metacomputing

Rich Wolski #! Neil T. Spring ** Jim Hayes"?

& University of California, San Diego and University of Tennessee, Knozville

b University of California, San Diego

Abstract

The goal of the Network Weather Service is to provide accurate forecasts of dy-
namically changing performance characteristics from a distributed set of metacom-
puting resources. Providing a ubiguitous service that can both track dynamic per-
formance changes and remain stable in spite of them requires adaptive programming
techniques, an architectural design that supports extensibility, and internal abstrac-
tions that can be implemented efficiently and portably. In this paper, we describe
the current implementation of the NWS for Unix and TCP/IP sockets and provide
examples of its performance monitoring and forecasting capabilities.

In this paper we describe the latest implementation of the Network Weather
Service (NWS), a distributed, generalized system for producing short-term
performance forecasts based on historical performance measurement. The goal
of the system is to dynamically characterize and forecast the performance de-
liverable at the application level from a set of network and computational
resources. Such forecasts have been used successtully to implement dynamic
scheduling agents for metacomputing applications [26,3], and to choose be-
tween replicated web pages [1].

The implementation of the NWS relies on adaptivity to enable stability, ac-
curacy, non-intrusiveness, and extensibility.

The NWS is designed to maximize four possibly conflicting functional char-
acteristics. It must meet these goals despite the highly dynamic execution
environment and evolving software infrastructure provided by shared meta-
computing systems [2].

e Predictive Accuracy: The NWS must be able to provide accurate esti-
mations of future resource performance in a timely manner.

e Non-intrusiveness: The system must load the resources it is monitoring
as little as possible.

e Execution longevity: To be effective, the NWS should be available at any
time as a general system service. It should not execute and complete — its
execution lifetime is logically indefinite.

e Ubiquity: As a system service, the NWS should be available from all po-
tential execution sites within a resource set. Similarly, it should be able to
monitor and forecast the performance of all available resources.

We have constructed the current NWS using using four different component
Processes.

e Persistent State process: stores and retrieves measurements from persis-
tent storage.

e Name Server process: implements a directory capability used to bind pro-
cess and data names with low-level contact information (e.g. TCP/IP port
number, address pairs).

e Sensor process: gathers performance measurements from a specified re-
source.

e Forecaster process: produces a predicted value of deliverable performance
during a specified time frame for a specified resource.

Workstation 2| NS: Name Server
. @#/’@ S+ Sensor

PS: Persistent State

/
Workstation 1 @ F: Forecaster

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.

Workstation 3

Workstation 2
Workstation 1 @

Workstation 3

(Clien>

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.


~~~~~~~~ ,. Workstation 2
SO

Nerkniation | .-
@®__

Workstation 3

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.



~~~~~~~~ ,. Workstation 2
SO

Workstation 1 |
00 |

Workstation 3

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.

Workstation 2| NS: Name Server
,,,,,,,, @#/’CS) S: Sensor

PS: Persistent State

[
Workstation 1 @ F: Forecaster

The location of the Persistent
State process that a Sensor will use for each of the measurements it gathers
is specified when the Sensor is configured. When it is initialized, each Sensor
registers the location of the Persistent State process that stores its measure-
ment data with the Name Service so that measurement data may be located
by name.

Workstation 3

At
present, the Name Server process that—rplements—thistanetionality 1s based

on the more general Persistent State process.

We are converting the Name Service to use an
implementation of the Lightweight Directory Access Protocol [32] (LDAP).

We anticipate that state storage and name service functionality will eventu-
ally be provided by lower-level metacomputing services, such as the Globus

Metacomputing Directory Service [10] and the Legion Resource Directory Ser-
vice [8].


~~~~~~~~ @, Watksiauon?
&9 @/@

Workstation 1

@*—

Workstation 3

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.




~~~~~~~~ @, Watksiauon?
&9 @/@

Workstation 1

(F)— D

Workstation 3

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.

Workstation 2

Workstation 1 @
(F)——(Glen>

Workstation 3

Fig. 1. NWS Processes distributed across three workstations. The Name Server
resides on only one host in the system. Sensors monitor the performance character-
istics of networks and processors and send their measurements to Persistent State
managers. The Forecaster acts as a proxy for application scheduling clients and
user queries. Workstation 2 can be integrated in the system without any associated
storage space, since its persistent state is managed on Workstation 3.

4. Performance Monitoring: NAWS Sensors

In general, there is a tension between
the intrusiveness of a monitoring technique and the measurement accuracy
it provides. The NWS attempts to use both extant performance monitoring
utilities and active resource occupancy to measure performance.

The function of an NWS Sensoris to gather and store time stamp-performance
measurement pairs for a specific resource. Each Sensor process may measure
several different performance characteristics of the resource it is sensing. The
TCP/IP network Sensor, for example, provides both bandwidth and end-to-
end round-trip latency measurements, but each set of measurements is named
and stored separately. That is, a Sensor does not attempt to correlate the
separate performance characteristics of a resource it monitors.

To make the system more robust, all NWS processes are stateless. Persistent
state — state that must be able to survive the failure of a process’ memory —
is managed explicitly throughout the system using Persistent State processes.
Each Persistent State process provides a simple text string storage and re-
trieval service and allows each stored string to be associated with an optional
time stamp. Each storage or retrieval request must be accompanied by the
name of the data set that is to be accessed, and any data that is sent to a
Persistent State process is immediately written to disk before an acknowledge-
ment is returned. Since the function of the NWS is to generate forecasts which
lose their utility after their epoch passes, the system does not maintain any
data indefinitely. Each file that a Persistent State process uses is managed
as a circular queue, the length of which is a configuration option. Data to
be archived indefinitely must be fetched and stored in some more permanent
medium outside the NWS before the queue fills.

CPU Sensor

The NWS CPU Sensor combines information from Unix system utilities up-
time and wvmstat with periodic active CPU occupancy tests to provide mea-
surements of CPU availability on timeshared Unix systems.

The CPU Sensor uses the one-minute measurement to calcu-
late the fraction of the CPU occupancy time that a process would get if it
were to run at the moment the uptime measurement were taken. From vmstat
output, the CPU Sensor uses a combination of idle time, user time, and system
time measurements to generate an estimate of the available CPU occupancy

fraction [31].

neither uptime nor vmstat provides information on the
priority of processes presently running on the system. In order to obtain more
accurate measurements, the CPU Sensor incorporates active probes into its
calculations. It periodically runs an artificial, compute-intensive “probe” pro-
gram and calculates the CPU availability as the ratio of its observed CPU
occupancy time to the wall-clock time of its execution.

Ta | T |

ao L1

a0 an
= | £ i
2 it 5 {
0 doh / F s o dn i
k- i e R R e k 2 [e J -,
i { |I I| Jll'III .Il'-_-"-l -».._____-"- ' \) _ﬂ__' _.-"'I | II Jllr"ﬂ ‘\.__.ﬂ'\- 25 ____d'\-\.x.-.- l'| | L__.-“‘h._‘__
.| ELE I| II b 2 an II |I 1 f L
F 1 1y F i | |I i i
) 1 | 4 | |

/ |

[2+ ’ 1 [an | II. I | II
-E" M -E‘ H ,_I | [
} ili } 1 !| !
: il i : i |
8 1 B |
] f i ~
T Y !
0 : n 0
= L
b i b
§ in | i in

a0+ ¥ e

_au 1 1 1 _au 1 1] 1

a1m 030 (10 130 200 230 am a0 nan | m | 2m 23 am
Tme= (hovrs) Time thowrs)

Fig. 2. Improvement from active probing in estimates of CPU availability generated
using uptime (left) and vmstat (right). The solid line shows the amount of error in
unadjusted estimates; the dashed line the error in adjusted estimates.

Net wor Kk Sensor

Because end-to-end network performance data between arbitrary machines is
not consistently available, NWS network Sensors rely on active network probes
exclusively when determining network load. Each probe consists of a timed

network operation.

Currently, the NWS network Sensor is capable of measuring three network per-
formance characteristics: small-message round-trip time, large-message through-
put, and TCP socket connect-disconnect time. The small-message probe con-
sists of a 4-byte TCP socket transfer that is timed as it is sent from a source
Sensor to a destination Sensor and back. The socket connection used to facil-
itate the transfer is already established before the probe is conducted. Large-
message throughput (that is taken to measure available network bandwidth at
the application level) is calculated by timing the transfer of a message using
TCP and the acknowledgement of its receipt by the receiving sensor.

Lyverage Response Time {ms)

50D

40D

aono

20D

100

100— Byte Pings from hepnrc.hep.net to www— hep.phys.unm.edu

I
n
o
Percentape of Packets Lost

bl

I!\

TTTTT T T I T T T I T A T T T T T T T T T T T T I T T T T T T T I T I TT 0T
COOOnOnOa 1111111 M oo 11 11 11 1 2o 11 1 1 1 1 i nnnin1 11111111153
12450 EE0 12400 0R01 Fe 400 omal 1%1%1%1%1@%%1 12450001 2245570801

Tima of Ping (GMT)

Genernoted bBhw HFPMWED ®w Fermilaoh

A ANTY

san|ec

yax| o R

= &% & CCIRT

[A LINE:]

Packet |oss rate (%

VVV VVVVVVVVVVVVVVV

15% 111 R S A b b b b b b b b i

NNN

Avg | atency (ns)

<
N N\
mn avg

N

max | at ency

o]

3

i

e
Il
3%

[

——n -

T

1 I 1

0 [||| | m
T o e Tl SRS e o o dm i

o

-

Ry e
T o

|

o ":
b

] phoncsh.pheni=bnl.goy

] phoncsh.phenixbnl.goy

5. Forecasting

To generate a forecast, a Forecaster process requests the relevant measurement
history from a Persistent State process. Recall that persistent state is stored as

updated by a Sensor, the most recent data will be present when a Forecaster
makes its request. Ordered by time stamp, the measurements may then be
treated as a time series for the purposes of forecasting.

INTEL CORP Splitz: ™
as of F-Jan-2003
go ' '

40 - .

20

0 . . .] I]
1990 1935 2000
oo 1 - T

2 300 -
]
o200 .
=100 F
0 A A " 1 N . Lau Bkl
Copyright 2002 Yahoo! Inc. http:/¢Finance .yahoo . comn,

An NWS Forecaster works only with time stamp-measurement pairs, and does
not currently incorporate any modeling information that is specific to a par-
ticular series. Instead, it applies a set of forecasting models to the entire series
and dynamically chooses the forecasting technique that has been most accu-
rate over the recent set of measurements.

The advantage of this adaptive approach is that it is ultimately non-parametric
and, as such, can be applied to any time series presented to the Forecaster.
While the individual forecasting methods themselves may require specific
parameters, we can include different fixed parameterizations of a particular
method with the assurance that the most accurate parameterization will be
chosen. &« Pronptes extensibility

When a forecast of a future value is required,
the Forecaster makes predictions for each of the existing measurements in the
series. Every forecasting model generates a prediction for each measurement,
and a cumulative error measure is tabulated for each model. The model gen-
erating the lowest prediction error for the known measurements is then used
to make a forecast of future measurement values.

5.1 FErxample Forecasting Results

m W y

; ko)

: i || 'ﬂ-h h | ﬁ \' |
{@.ﬁ? 'l* | t o l ’:.frsi |

Fig. 3. The left graph shows four days of bandwidth measurements between UC
Santa Barbara and Kansas State University. The right graph shows the correspond-
ing NWS forecast values.

Seaich the HNES

htrpfhwx ox.0csh ed 00 Gl 0 phTe cgitalget=potn pohe.os. ocsbeda ..

NWS Time Series Query

F-oa:linm

A

Fe=b 01

Resoutce correntCpn

Soorce pompone.csncs boedn: ol

Fl

12y

ez A1 ez A1 Fels G2 Fels 3 -
“MIan 1 =k =Ly] =H! =
linc
Hsasu-ene-t aoreZart
Set data I Set postsalpt I

.
| NETWORK
WEATHER |
SERVICE |

INTEL CORP Splits: ¥
az of 31-Jan-2003
35 |

30

28

20

10

200

2 150
(]

SlooF 1

2 %

Copuright 2002 Yahoo! Inc. http:/AFinance .yahoo . coms

1 " 1 " 1 " 1 " 1 " 1
Margz Mayiz Juloz SepiZ N2 Jania
T T T T T T T T T T !

COCA COLA Co Splitz: ¥
az of Jl-Jlan-2003
Eﬂ 1 T I T 1 T 1 T 1 T I

35

a0

45

40

35
20

2151 -
[}
=10

=
oll
Copuright 2002 Yahoo! Inc. http:/Finance .yahoo .comd

1 L | L 1 L 1 L 1 L |
Maro2 Mauiz Juloz SEpPDZ Nowi2 Jana
I '] ' I ' I ' I ']

7 Sensor Control

To make the system long-lived despite the lossy network connections and inter-
mittent machine failures that occur in any large distributed setting, the NWS
relies on adaptive and replicated control strategies. In particular, the Sensors
use adaptive time-out discovery and a distributed leader election protocol [15]
to remain stable while, at the same time, limiting the load they introduce.

all-to-all network Sensor communica-
tion would consume a considerable amount of resources (both on the individ-
ual host machines and on the interconnection network) if it were run asyn-
chronously using the entire network Sensor population. The possibility that
Sensor probes would collide and thereby measure the effect of Sensor traffic in-
creases quadratically with the number of Sensors. To avoid Sensor contention
and to provide a scalable way to generate all-to-all network performance mea-
surements, the network Sensors are organized as a hierarchy of Sensor sets
called cliques.

National UTenn

We may choose (and we can reconfigure dynamically) to have sub-

cliques . if a new site wishes to join the National clique,
its representative Sensor can be added dynamically. Further, since the cliques

are independent, it is possible to impose different “virtual” hierarchies over
the same Sensor population.

To reduce contention within a clique, only a single clique member conducts
experiments at any given time. This policy is implemented by passing a clique
token among member Sensors.

Once the token has visited all Sensors in the clique, it is returned to
the initiating Sensor (the leader) which is then responsible for re-initiating
it. The periodicity with which the clique leader re-initiates the token controls
the periodicity with which each Sensor conducts its probes.

Each
Sensor then calculates a local time-out based on the last time it held the token
and the time-out that the leader has determined. If the local time-out expires
before a Sensor receives the token again it assumes that either the token has
been lost or the network has partitioned. It then generates a new token, marks
itself as its leader, and initiates it into the system.

In this way, if the token has been lost due a Sensor failure, a new one will be
initiated.

if the network partitions into disjoint sets, at least one
token will be started in each set when the time-out occurs.

To prevent multiple tokens from consuming network
resources indefinitely, tokens are sequenced, and any Sensor encountering an
old token discards it rather than propogating it to the next Sensor.

7.1 Adaptive Time-out Discovery

The stability of the token protocol depends on the clique leader’s ability to
determine when the token should be timed out.

The Sensors, therefore, require a
prediction of what the time-out value should be, given the performance vari-
ations of the network. To make this prediction, the Sensors use the prediction

techniques that are integrated with the Forecasters. The clique leader passes
a time series of circuit times to a local Forecaster interface and receives back

a predicted circuit time and an estimate of the variance

“Future” devel opnents...

NASA IPG and the NWS

« NWS Interface to Globus

« NWS application forecasting library — dynamic
benchmarking

» Archival storage facility based on Netlogger

* AppLeS enhancements, support, and good will

NELILOYUET VISUANZAaUOT. INELWOTK MIOTHLIOTINIY 1T TeL TUUL iR goy

TOF — —
P LA e L LT
HOST=dpssIx02.1bl.gov
DEST=dg0On10.mcs.anl.gov ML.EVHT=pipechar
RESULT=119.210000
pipechaxr —| 0. 0, 300 00
2
-
5
- £, AJ(/L_H_ i
P N —_/—\—_:—\./—\—'—\—'—'-‘-'__:—_#II(
ping — — 0. 00 200 00
iperf - 0. 00,100 00

M dgoOn?_mcs_anl_gowv

Speed
Window (s) Max (s) «|rin» [jl ‘Pl ?l @ 1.00
267355.7 117636¢ s
[L] | T | | L=
FRTI0D.T
I % i —
[*
0.0 11765364, 7
Ct atiimes Praimn | sl

apas

Qutli ne:

\' My history; ny nonitoring stuff; cf. previous / continuing HEP
nmonitoring infrastructure.

\ My old Coke / Intel conparison forecast
o History / people of the NW5 project

O NW5 is distributed as part of ...

\ Take a look at including a bit of Jenny Schopf’s stuff on
prognosti cati on.

